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Purpose 

While most researchers and educators agree that there is a need to integrate computational 

thinking (CT) in high school curricula, they differ in their conceptualization of CT, ways to 

achieve integration, and the rationale for doing so (Wing, 2006; Weintrop et al., 2016; Grover, 

2018). In line with the ongoing efforts for curricular reforms to engage students in authentic 

disciplinary practices (e.g., Goldman, Ko, Greenleaf & Brown, 2018), Wilensky, Horn and 

colleagues have argued for CT integration in science and mathematics classrooms for the 

following reasons: (a) for students to learn authentic contemporary disciplinary practices, (b) 

prelogical effectiveness of thoughtfully integrated computational tools, and (c) to reach the 

widest possible audience, especially women and minorities who are underrepresented in 

computational fields (Wilensky, Brady & Horn, 2014; Weintrop et al., 2016).  

One challenge for such integration is to develop pedagogically effective tools and 

curricula that teachers can adopt in their classrooms (Windschitl, Thompson, Braaten, & Stroupe, 

2012). It requires both development of appropriate technological tools and novel methodological 

approaches to design curricula (e.g., Jeong & Hmelo-Silver, 2016). Inviting teachers to be design 

partners for co-designing such units has been an effective approach to increase their ownership 

and engagement in the appropriate pedagogical practices (Kyza & Georgiou, 2014).  

In this paper, we investigate how our technology-based design approach mediated such 

co-design efforts. We present a case study of a researcher-practitioner design partnership for 

three years as it matured from using pre-designed CT-integrated curricula to co-designing new 

CT tools and curricula. We discuss changes in teacher’s involvement in the co-design process 

and how the underlying technology platform that was used to design the computational tools 

supported those changes. We also discuss how the participation of the teacher in the co-design 

process influenced her shifts in her classroom teaching practice. We argue for the effectiveness 

of our technology-mediated design approach for co-designing CT-integrated science curricula. 

 

Theoretical Frameworks 

CT-STEM practices. This work is framed with the operational definition of CT-STEM 

(Computational Thinking in STEM) as a set of practices (Weintrop et al. 2016). This taxonomy 

categorizes CT-STEM practices in terms of four major strands: data practices, modeling and 

simulation practices, computational problem-solving practices, and systems thinking practices 

(Table 1). This project focused on integrating these CT-STEM practices into high school science 

curricula. We developed new computational models and activities that are rooted in the 

disciplinary contexts for students to learn disciplinary ideas. We used two technology platforms 

to create computational models for students - (1) NetLogo (Wilensky, 1999; 2001), an agent-

based modeling software, and  (2) NetTango (Horn & Wilensky, 2011; 2012), a block-based 

programming interface to NetLogo which uses semantically meaningful blocks tuned to the 

content domain (Wilkerson-Jerde & Wilensky, 2010; Wilkerson-Jerde et al, 2015) (Figure 1).  

 



Emergent Systems Microworlds (ESM). The design framework for the computational 

models is called Emergent Systems Microworlds (ESMs) (Dabholkar & Wilensky, 2019). ESMs 

are agent-based computational models that are designed as constructionist microworlds 

(Wilensky, 2001; Papert, 1980). Microworlds are learning environments that allow students 

access to external representations, often computational, to explore, investigate, and learn about 

disciplinary ideas (Noss & Hoyles, 2017). The ESM design framework is based on 

restructuration theory (Wilensky & Papert, 2010). ESMs enable learners to access 

representational forms that reformulate the disciplinary knowledge (Dabholkar, Anton & 

Wilensky, 2018; Dabholkar & Wilensky, 2020). Wilensky & Papert have coined the term 

restructurations to describe such knowledge reformulations.  

Wilensky and Papert define structuration as the encoding of the knowledge in a domain 

as a function of the representational infrastructure used to express the knowledge. A change from 

one structuration of a domain to another resulting from the change in representational 

infrastructure is restructuration. In the design of ESMs, the agent-based models are the source of 

the restructurations. The use of agent-based models provides a powerful entry point into 

understanding an emergent phenomenon (Wilensky & Reisman, 2006). The agent-based 

restructurations reduce cognitive and perceptual limitations by allowing students to reason about 

emergent patterns at the system level by observing behaviors of agents (Goldstone & Wilensky, 

2008). 

In this paper, we argue that the ESM-based co-design approach allows a teacher to design 

pedagogically effective representations and devise appropriate pedagogical strategies to support 

student learning of CT practices. To understand the effectiveness of this technology-mediated 

co-design approach we investigate the following research question:  

How does restructuration through ESM facilitate the co-design process for CT-

integration into science units? 

 

Methods & Data Sources 

We present a longitudinal case study of a co-design partnership of three years between a researcher 

(the first author) and a teacher, Tracy (a pseudonym), a participant teacher in the CT-STEM 

project, which involved teacher professional development during summers and classroom 

implementations during the school years (Peel et al., 2020). These models and other computational 

tools were integrated into three published and publicly available open-source units (Dabholkar, 

Woods, Bain, Hall, Horn, & Wilensky, 2018; Dabholkar, Granito, Horn, & Wilensky, 2018; 

Granito, Dabholkar, Horn, & Wilensky, 2019). The units also had questions to scaffold students’ 

learning of disciplinary ideas as well as CT practices. Tracy taught these curricular units in her 

biology classrooms at Greenville High School (pseudonym). See Table 2 for school demographics.  

In year one, Tracy was given a CT integrated biology unit that was previously designed by 

the research team. In year two, Tracy provided direction to the researcher as they designed a new 

CT integrated biology unit. She chose the biology content, provided her lesson plans, and gave 

feedback as lessons were designed by the researcher. In year three, Tracy worked side-by-side with 

the researcher to co-design a new CT integrated unit during a Computational Thinking Summer 

Institute (CTSI). Each year Tracy taught the curricular units eight to ten class periods of 45-50 

minutes.  

Through this multi-year process, we collected data to characterize Tracy’s experiences. 

The data sources include interviews with the teacher, weekly reflections, session recordings, a 

post-workshop interview. Additionally, we analyzed the unit designs and classroom video of 



implementations to support the analysis. We used a case-study method (Yin, 2004) to analyze 

how the ESM-based design approach supported and increased Tracy’s involvement and changed 

her pedagogical approach while teaching in the classroom. We coded the interview data to 

identify changes in Tracy’s involvement in co-design, classroom implementation, and views of 

student outcomes. For qualitative analysis of the video data, we used the activity-logging 

approach to identify episodes that illustrated Tracy’s pedagogical practices while using 

computational tools. The claims and codes were triangulated where possible with multiple data 

sources, such as the intermediate and final co-design artifacts.  

 

Findings 

In this section, we present our qualitative analysis of how the agent-based restructurated 

representations increased Tracy’s involvement in the co-design process across three years. We 

also discuss how the technology-mediated pedagogical discussions during the co-design process 

resulted in changes in Tracy’s pedagogical practices to support students’ learning of CT 

practices. 

Restructurated representations. Agent-based restructurations allow learners to have 

visual and cognitive access to agent-level representations as well as system-level patterns. For 

example, learners can visualize behaviors of individual moose and wolves, as well as the 

population changes in the NetLogo model of prey-predator interactions in the Year 1 

Curriculum. Since this unit used a pre-designed model, Tracy did not have any role in designing 

the model nor did she design the pedagogical activities using the model to support student 

learning. While teaching this unit, Tracy mainly encouraged students to explore and learn from 

the agent-based models, but she did not provide any specific suggestions to guide their 

explorations. Her focus was to use computational models to teach the concepts (Table 3 a). 

Tracy’s pedagogical practices to support students’ engagement in the embedded CT activities 

changed over the next two years.  

In the second year, Tracy was more involved in figuring out how to make curricular 

activities computational (Table 3 b). During the very short co-design time of 4-5 hours in total, 

Tracy not only engaged deeply with the computational representations, she quickly appreciated 

their pedagogical effectiveness. In the class, she took a much more active role in guiding 

students’ CT activities regarding modeling and simulation, and data practices. In her post-

implementation interview, Tracy said that because the students were learning actively (by 

engaging in these practices), they had a “much deeper understanding” of the content (Year 2 

post-implementation interview). 

In the third year, Tracy played an active role in both designing the agent-based models 

and the design of pedagogical activities. Over the course of two weeks, Tracy and a project 

researcher discussed the designs of ESM computational models, as the researcher coded the 

models. During that time, the ESM design platforms, NetLogo and NetTango, allowed Tracy to 

view the models as they were being built to give feedback for making it more pedagogically 

effective and imagine pedagogical activities using the model. The researcher could quickly 

incorporate her design suggestions. They co-designed pedagogical activities and often discussed 

how to support students’ learning using computational tools, which potentially impacted Tracy’s 

teaching practices. A vignette in the next section demonstrates how Tracy used a pedagogical 

strategy based on her own experiences in the co-design process.  

Technology mediated pedagogical strategies. In the Year 3 curriculum, in one of the 

lessons students used coding blocks to build an agent-based model of animal behavior (Figure 1 



c). The agent-based coding blocks in NetTango allow an easy visualization of changes in agent 

behaviors based on the changes in their properties. In this vignette, the teacher and students are 

talking about two computational agents, chambers, that are used for an experimental setup 

(Figure 1 c). The dialogue between Tracy and a student transcribed from a video (Figure 2) 

illustrates how Tracy used a prior discussion between Sanjay (Pseudonym, for the researcher) 

and her to encourage a student to debug her model without giving a direct answer to her 

computational problem.  

 

Student: “In my chamber…. I am changing the sizes, but it won’t get bigger” 

Tracy: “This is how Sanjay told me. He never told me answers either. He made me figure it 

out. When you are taking a math class and when you are making a graph, what does 

x mean?” 

Student: “I mean, it’s like…..” (makes a horizontal movement with hands) (see figure 2) 

Tracy: “So what does Y mean?” 

Student: Students “It’s that”. (Makes a vertical gesture) 

Tracy: “So when you are changing the x and the y, are you changing the size of the 

chamber?” 

After Tracy asked this question, the student gestured positively indicating that she figured out the 

solution to her coding problem. 

This vignette illustrates how ESM computational models allow students to quickly try 

out, reason, and figure out solutions to computational problems while engaged in model 

construction. Encouraging students to figure out the computation themselves by asking relevant 

questions is an important pedagogical strategy for helping students bridge the science and the 

CT. This is one of many learning strategies that came up during the co-design discussions to 

support the learning of CT practices in ESM-based units. The other strategies include asking 

students to 1) design robust experimental procedures to account for randomness, 2) modify a 

computational model to account for new factors, and 3) use automated experimentation and data 

collection strategies for creating and analyzing big datasets. The teacher used all these strategies 

and accompanying pedagogical moves that came up during the co-design discussions.   

Scholarly Significance  

The research community still has a lot to learn about how to teach CT in science contexts, and 

even less is known about how to support teachers in designing and implementing this integration 

(Sands, Yadav, & Good, 2018). In this paper, we described a novel co-design approach for 

creating CT-integrated science units. We discussed how the co-design partnership was mediated 

by emergent systems microworlds (ESM), the technological design framework used for creating 

computational models for learning CT practices. Visual and cognitive access to agent-level 

representations in an ESM allowed deeper and meaningful participation of the teacher in the co-

design process. This work demonstrates the effectiveness of our ESM-mediated co-design 

approach to increase teacher ownership and engagement in crafting effective pedagogical 

practices. 
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Tables 

Table 1. The CT-STEM project’s Taxonomy of CT-STEM Practices 

Data Practices Modeling and 

Simulation Practices 

Computational 

Problem Solving 

Practices 

Systems Thinking 

practices 

Collecting Data Using Computational 

Models to Understand 

a Concept  

Preparing problems 

for computational 

solutions 

Investigating a 

complex system as a 

whole 

Creating Data Using Computational 

Models to Find and 

Test Solutions 

Programming Understanding the 

relationships within a 

system 

Manipulating Data Assessing 

Computational Models 

Choosing effective 

computational tools 

Thinking in levels 

Analyzing Data Designing 

Computational Models 

Assessing different 

approaches 

Communicating 

information about a 

system 

Visualizing Data Constructing 

Computational Models 

Developing modular 

solutions 

Defining a system 

and measuring 

complexity 

  Creating 

computational 

abstractions 

 

  Troubleshooting and 

debugging 

 



Table 2. Demographics of the School  

School Race Demographics Free/Reduced 

Price Lunch  

English 

Language 

Learners 

Individualized 

Education 

Plans 

Greenville 44% White, 30% Black, 18% 

Hispanic, 5% Asian, 0.4% 

Native American 

39% free or 

reduced-price 

lunch 

4.2% ELL 12% IEP’s 

 

Table 3. Excerpts from Tracy’s Post-interview  

Year 1 Year 2 Year 3 

(a)“...using the models to 

show what happens. I think 

it's computational thinking… 

then to see what happens if 

you change parameters. And 

it's instant that you get the 

information like right away, 

predicting what would 

happen in an actual 

ecosystem. So using computer 

models to also teach the 

concepts.”  

(b) “... we met at least a 

couple of hours at least once 

a week...We started from the 

activities from [last] year 

working on the ones that were 

already made… he already 

asked me, so what do you do? 

What are the activities that 

you already do? … and then 

[he] talked about, well how 

can we turn these into the 

computational?” 

(c)“I learned because behind 

the code… I didn't 

understand what made the 

agents work the way they 

work. I wouldn't even know 

what an agent was… You 

have to tell program to… 

they're not moving naturally. 

And you have to tell them to 

do that. You have to tell them 

what the preferences and how 

did you figure that out? Well, 

you actually did the research, 

right? So we knew this is a 

model of like real behavior.”  

 

  



Figures   

(a) 

 

(b)

 

(c) 

 

 

Figure 1: (a) A NetLogo model about prey-predator interactions in a pre-designed unit in 2017; 

(b) A NetLogo model for learning about Hardy-Weinberg equilibrium and natural selection in 

2018; (c) The Curricular flow of the co-designed unit about animal behavior in 2019.   

 

 
Figure 2: Tracy discussing a debugging strategy with a student. The white arrow shows the 

horizontal motion gesture made by the student while answering Tracy’s question. 
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